The number of values of $\alpha $ in $[0, 2\pi]$ for which $2\,{\sin ^3}\,\alpha  - 7\,{\sin ^2}\,\alpha  + 7\,\sin \,\alpha  = 2$ , is

  • [JEE MAIN 2014]
  • A

    $6$

  • B

    $4$

  • C

    $3$

  • D

    $1$

Similar Questions

If $L=\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ and $M=\cos ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right),$ then 

  • [JEE MAIN 2020]

The number of solution of the given equation $a\sin x + b\cos x = c$ , where $|c|\, > \,\sqrt {{a^2} + {b^2}} ,$ is

If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in  [0,2 \pi ]$ , then maximum integral value of $x$ is

The set of all values of $\lambda$ for which the equation $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$

  • [JEE MAIN 2023]

Let $\theta \in [0, 4\pi ]$ satisfy the equation $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ . If the sum of all the values of $\theta $ is of the form $k\pi $, then the value of $k$ is